
Henk: a typed intermediate languageSimon Peyton JonesUniversity of Glasgow and Oregon Graduate InstituteErik MeijerUniversity of Utrecht and Oregon Graduate InstituteMay 20, 1997AbstractThere is growing interest in the use of richly-typed interme-diate languages in sophisticated compilers for higher-order,typed source languages. These intermediate languages aretypically strati�ed, involving terms, types, and kinds. Asthe sophistication of the type system increases, these threelevels begin to look more and more similar, so an attractiveapproach is to use a single syntax, and a single data type inthe compiler, to represent all three.The theory of so-called pure type systems makes preciselysuch an identi�cation. This paper describes Henk, a newtyped intermediate language based closely on a particularpure type system, the lambda cube. On the way we give atutorial introduction to the lambda cube.1 OverviewMany compilers can be divided into three main stages. Thefront end translates the source language into an intermedi-ate language; the middle end transforms the intermediate-language into a more e�cient form; and the back end trans-lates the intermediate language into the target language.In the past, intermediate languages for source languageswith rich type systems have usually been un-typed. Thecompiler �rst type-checks the source program, and thentranslates the program to the intermediate language, dis-carding all the type information. After all, the type check-ing simply ensured that the program would not \go wrong"at run-time, and once that is checked there is no further usefor types.Recently, however, there has been increasing interest in typedintermediate languages (Peyton Jones [1996]; Peyton Joneset al. [1993]; Shao & Appel [1995]; Tarditi et al. [1996]).There are several motivations for such an approach: thecompiler may be able to take advantage of type informationto generate better code; it may be desirable to treat types asvalues at run-time, in which case it is necessary to maintainThis paper will be presented at the June 1997 Work-shop on Types in Compilation.

accurate compile-time types; and the compiler can check itsown activity (if desired) by checking the type-correctness ofthe intermediate program. We elaborate each of these pointsin Section 2.1.This paper describes the design of a new, typed intermediatelanguage, Henk, designed for compilers for purely-functionallanguages. It has the following distinctive features:� Henk is based directly on the lambda-cube, an expres-sive family of typed lambda calculi. We have founda shortage of introductory material about the lambdacube, so we present a tutorial in Section 3.� Henk is a small language| there are only seven con-structors in the data type of expressions. Even so, itis a real language, in the sense that it is rich enoughto use as a compiler intermediate language.� Because of its lambda-cube heritage, Henk uses a sin-gle syntax for terms, types, and kinds. Better still,compilers for Henk can use a single data type to repre-sent all three levels. This leads to considerable econ-omy in both the syntax of the language, and the utilityfunctions of the compiler itself.� Henk has an explicit concrete syntax. Intermediate lan-guages are typically expressed only as a data type ina particular compiler. Giving a concrete syntax is anapparently trivial step, but we believe it is an impor-tant one, and it is one to which compiler-writers oftenpay little attention. A compiler front end can produceHenk to be consumed by the back end of a di�erentcompiler; or to be transformed by some external pro-gram before being fed back into the original compiler.This paper introduces no new technical results. Rather, ourmain contribution is to build a bridge between recently-developed type theory and the compiler research commu-nity:� We are the �rst to suggest using the lambda cubeas the basis for a typed intermediate language. Whybother? We see two persuasive reasons:{ It dramatically reduces the number of data types,and the volume of code, required in the com-piler. For example, the Glasgow Haskell Compiler(GHC) has separate data types for terms, types,



and kinds, and separate algorithms for parsing,printing, typing, and transforming them. Col-lapsing the three levels gets rid of all this dupli-cation.{ It is easier to accommodate new developments inthe type system of the source language, becausethe lambda cube's type language is already as ex-pressive as its term language.� We give a tutorial on the lambda cube, emphasisingaspects relevant to compiler builders. (Most of the lit-erature is relatively recent | post 1988 | and writtenfrom the point of view of theorists.)Our initial focus is on non-strict languages, but we hope tomake Henk neutral with respect to the strict/non-strict ques-tion. That is, rather than having two variants of Henk (onestrict, one non-strict), we hope to have a single languagethat treats both styles as �rst class citizens, and allows freemixing of the two in a single program.We assume familiarity with the lambda calculus in general,and with the second-order lambda calculus, also called F2,in particular.2 Background and motivation2.1 Type-directed compilationIt has been recognized for some time that maintaining typeinformation right through to code generation, and beyond,can be bene�cial. Speci�cally:� Accurate type information can guide compiler analy-ses, and transformations.For example:{ Strictness analysis over non-
at domains has tobe guided by type information (Peyton Jones &Partain [1993]).{ A compiler may be able to use more e�cient rep-resentations of data values if it knows their types.For example, an integer can be represented by theinteger itself rather than a pointer to a box con-taining the integer (either in a strict language,or in a lazy one in contexts where the integeris certainly evaluated). The price to be paid isthat such unboxed integers cannot be passed topolymorphic functions, since their representationdi�ers from the simple pointer that polymorphiccode typically expects. Guided by type informa-tion one can specialise the polymorphic functionto the unboxed types at which it is used (Pey-ton Jones & Launchbury [1991]; Tarditi et al.[1996]).{ Transformations that remove intermediate datastructures, often called deforestation or fusiontransformations, rely heavily on types to guidethe transformation. In some cases the very cor-rectness of the transformation relies on para-metricity, a property of well-typed polymorphic

functions (Gill, Launchbury & Peyton Jones[1993]; Hu, Iwasaki & Takeichi [1996]; Launch-bury & Sheard [1995]).� Traditional static type checking is performed com-pletely at compile time. In more sophisticated set-tings, however, it may be useful to postpone some typechecking until run time. For example:{ Some reasonable programs cannot readily be ex-pressed in a static type systems, notably ones in-volving meta-programming. There are many pro-posals for incorporating a type Dynamic in an oth-erwise statically-typed language, but all involvesome run-time check that the type of a valuematches an expected type.{ Rather than statically specialise a polymorphicfunction for the types at which it is called, onecan pass the type as an explicit argument, so thatthe function can behave appropriately (Harper &Morrisett [1995]).{ \Tag-free" garbage collectors need some run-timetype information to guide them (Tarditi [1996];Tolmach [1994]).All these applications require accurate type informa-tion to be available at run-time, and hence at compiletime too.� Debugging a compiler can be a nightmare. The onlyevidence of an incorrect transformation can be a seg-mentation fault in a large program compiled by thecompiler. Identifying the cause of the crash, and trac-ing it back to the faulty transformation, is a long,slow business. If, instead, the compiler type-checksthe intermediate-language program after every trans-formation, the huge majority of transformation bugscan be nailed in short order. It is quite di�cult to writean incorrect transformation that is type correct! Fur-thermore, the program cannot crash if it is type cor-rect, so even incorrect transformations can only give anunexpected result, not a crash, which is usually mucheasier to trace.We call the Henk type-checker \Core Lint". If thecompiler is correct, Core Lint does nothing useful, andis switched o� by default. In our experience, its abilityto localise compiler bugs would by itself justify the useof a typed intermediate language.Compilers that maintain and use type information through-out the compiler have come to be called \type-directed".Standard ML of New Jersey has been type-directed for sometime (Shao & Appel [1995]), but its internal type system ismonomorphic, so it cannot track types through polymorphicfunctions. Since 1990 the Glasgow Haskell Compiler (GHC)has used a language based on the second-order lambda calcu-lus as its intermediate language (Peyton Jones [1996]; Pey-ton Jones et al. [1993]).More recently, the TIL compiler uses a considerably more so-phisticated (and complicated) intermediate language capa-ble of expressing intensional polymorphism, including recur-sive functions at the level of types (Morrisset [1995]; Tarditiet al. [1996]). TIL uses a strati�ed type system, which sim-pli�es the proof theory, but it does lead to considerable du-plication in compiler transformations (Tarditi [1996]). We2



speculate that the lambda cube might provide a theoreti-cally sound way to get the best of both worlds.Shao is also developing a typed intermediate language,FLINT, with similar goals to TIL's (Shao [1996]).2.2 Implicit vs explicit typingIt is important to distinguish the typing requirements of asource language and an intermediate language.Almost all source languages are, to some degree, implicitlytyped. There is a continuum between full type inference(where no type information is given by the programmer)and type checking (where all type information is given).The type system of a source language is usually a delicatecompromise of expressiveness and type inference. The moreexpressive the type system, the more guidance (in the formof type signatures and the like) must be given to the typechecker.On the other hand, it is highly implausible to have animplicitly-typed intermediate language, because it hard toensure that every transformation preserves the delicateproperty that types can be inferred from the program source.Indeed, many transfomations do not (e.g. desugaring a letexpression to a lambda abstraction applied to the right-handside of the let de�nition). An intermediate language can,however, be explicitly typed. When the front end trans-lates a source program into the intermediate language, itcan decorate it with type information based on the resultsof type inference on the source program. If the compiler,for some reason, wants to check the type-correctness of anintermediate-language program, it should be a matter oftype checking and not type inference. In practical terms,type checking does not involve uni�cation or other sophisti-cated algorithms.Furthermore, because it is explicitly typed, the intermedi-ate language can have a much more expressive type systemthan the source language. For example, the intermediatelanguage might permit arbitrary universal quanti�cation intypes, whereas a source language like ML or Haskell restrictuniversal quanti�cation to the top level of a type1.2.3 Towards the lambda cubeWhile it is obvious enough in retrospect, it was a break-through when we realised in 1990 that the second-orderlambda calculus was precisely what we needed to expressand maintain type information in the intermediate languageof a compiler. (Peyton Jones [1996] gives some examples.) Alarge body of theory and its design choices, could be pressedinto immediate service.With Henk, we aim to take the same idea one step further,by appropriating another body of theory, the lambda-cube,and adopting its design choices to structure the language.1Haskell's type classes actually give rise to intermediate-languageconstants of rank-2 polymorphic type, a nice example of the way inwhich a language feature can make use of a type discipline whichwould be unworkable in its full generality.

Speci�cally, Henk goes beyond the second order lambda cal-culus in the following ways:� It is elegantly parameterised. Simply by selecting ordiscarding type rules one can force Henk to be equiva-lent to the simply-typed lambda calculus, the second-order lambda calculus (Girard [1972]), its extension tohigher-order kinds (F!) (Girard [1972]), or the calcu-lus of constructions (�C) (Coquand & Huet [1988]).In Section 4 we show how we can also extract a pred-icative version of F!.� As it happens, Haskell's type system allows type vari-ables to range over type constructors (not merelytypes), so the generality of F! is already required.Henk puts this extension on a �rm theoretical foun-dation, whereas it is a somewhat ad hoc extension ofGHC's earlier Core language.� Henk provides a full lambda calculus at the level oftypes. Provided recursion is disallowed | a restric-tion easily expressed in the type system | evaluationof types is strongly normalising (i.e. guaranteed to ter-minate), something that is really the de�ning propertyof a type.This lambda calculus subsumes Haskell's type syn-onyms, which receive a rather ad hoc treatment inGHC, and it also permits us to explore more ambi-tious paths such as those suggested by TIL.� Despite this extra richness, Henk is a very small lan-guage. The data type of expressions, for example, hasonly seven constructors. Better still, the very samesyntax is used for expressions, types, and kinds. Thiseconomy is re
ected:{ in the type system by a single set of rules thatsay when a term is well-typed, when a type iswell-kinded, and when a kind is well formed.{ in the compiler by a single data type that repre-sents terms, types and kinds; and a single set ofutility functions to parse, print, type-check, andso on.One might object that using the same compiler data typeto represent terms and types would allow a buggy compilerto construct ill-formed terms, such as attributing the type 3to a variable. With GHC's current structure, such a thingwould be identi�ed as ill-typed when compiling the compiler,because something from the datatype representing termscannot be used in place of something from the datatyperepresenting types.GHC's current structure may prevent the compiler from ac-cidentally constructing some bogus terms, but it does noteliminate all of them. For example, 3 True is a legal valuein the datatype of terms, but of course it is ill-formed. In-stead we rely on Core Lint (Section 2.1) to identify suchbugs. Folding together the three levels does, however, post-pone the detection of certain (actually rather unusual) errorsfrom compiler-compilation-time to compiler-run-time.3



E ::= K Constantj x Variablej EE Applicationj �x : E:E Abstractionj �x : E:E Quanti�cationFigure 1: Syntax of Pure Type System expressions3 Pure Type Systems and the LambdaCubeSo what should the new typed intermediate language looklike? Fortunately, Barendregt has done all the hard workfor us (Barendregt [1992]). Pure Type Systems (PTS) arean elegant way of presenting explicitly-typed lambda-calculiin a uniform way, and give us almost exactly what we want.However, the literature on pure type systems is mostly writ-ten from the perspective of theorists, and while much of itis excellent, it is not for the faint hearted. In this sectionwe therefore begin with a tutorial on Pure Type Systems,using a very small expression language. In Section 5 we thenelaborate this calculus into a real language.3.1 The familiar coreThe syntax of PTS expressions is given in Figure 1. The�rst four productions should be familiar: constans, vari-ables, applications, and abstractions. The language is ex-plicitly typed, so that the variable bound by a lambda ab-straction is annotated with its type. The �fth production,�-abstraction, is a key idea of PTS, and as we will see shortlysubsumes both function arrow and universal quanti�cation.3.2 Mixing terms and typesThe unusual feature about the PTS world is that the typethat decorates the bound variable of a lambda abstractionis simply another expression. That is, types have the verysame syntax as terms.This seems like an attractive idea. After all, like terms, theconventional syntax of types includes constants (e.g. Int),type variables, applications (e.g. Tree Int), abstractions(in the form of type synonyms), and (in a polymorphic sys-tem) a binding construct, namely universal quanti�cation.Furthermore, the second order lambda calculus requires ab-stractions and applications of types to appear in terms.In a PTS, a single form of abstraction and application suf-�ces, at least from a syntactic point of view. For example,here is an expression written in F2:��:�x : �:id [�] x� introduces a type abstraction that binds the type variable�, which in turn is used as the type of x. In the body ofthe abstraction, the polymorphic identity function, of type8�:�! �, is applied to � and x. We use square brackets toindicate type application.

In our PTS language, the same abstraction and applicationforms serve for both types and terms, so we can rewrite theexpression thus: �� : ?:�x : �:id � xNotice that this decision forces us to attribute a type to thevariable �. The type of a type is called its kind, and ? isa kind constant, usually pronounced \type". Thus \� : ?"simply says that � is of kind \type"; that is, � is a typevariable. The question that begs to be asked is this: is ? theonly kind? The answer is \yes" for F2, and \no" for F!. InF!, type variables can range over type constructors as wellas over types; indeed, this is precisely what distinguishes itfrom F2. For example, in F! we might write:(�m : ?! ?:�x : m Int: : : :) TreeHere, the �rst lambda abstracts over m, whose kind is ? !?. The second lambda abstracts over values of type m Int.The whole abstraction is applied to a type constructor Tree,whose kind is presumably ?! ?.In short, even if the syntax had not forced us to attributea type to �, the move from F2 to F! would have doneso. Is the extra power of F! required in a compiler inter-mediate language? Clearly this depends on the source lan-guage, but the extra power is certainly required for Haskell,whose type system explicitly includes higher-kinded typevariables2 , most particularly to support constructor classes(Jones [1995]).So far this all seems attractive, but there are at least threeworries:1. How should we interpret function arrow, \!", in thelanguage of types? As a constant? Perhaps, but it isa very special one indeed, because it has an intimaterelationship with abstraction and application at theterm level.2. What is to play the role of universal quanti�cation,\8", in the language of types? (It does not take muchexperimentation to convince oneself that � is inappro-priate for this purpose.)3. Now that the types and values are mixed up together,how can we be sure that the resulting expression stillmakes sense? That is, can we give sensible type rulesfor the language?These questions are all elegantly resolved by the �fth form ofexpressions given in Figure 1, to which we turn our attentionnext.3.3 NotationBefore we do, it will be helpful to establish some terminol-ogy. We have identi�ed three levels so far: terms, types, andkinds. An expression, described by the syntax of Figure 1,can denote a term, a type, or a kind. We call these threelevels sorts, so that we might say that an expression is of2This was an innovation in Haskell 1.3; earlier versions of Haskelldid not have higher-kinded type variables.4



sort Term, or of sort Type, or of sort Kind. More commonly,though, we simply say that an expression is a term, or is atype, or is a kind.Unfortunately it is very hard to avoid using the word \type"for multiple purposes. In particular, note the di�erence be-tween sort Type and kind type. For example, both Int : ?and Tree : ? ! ? are of sort Type; but only Int is of kindtype (Int : ?).Each well-formed term has (belongs to) a type, and eachwell-formed type has a kind. A type system speci�es pre-cisely which expressions are well-formed and which are not.In general, a PTS may have more than three levels (or evenan in�nite number), but in this paper we study a particularfamily of PTSs called the lambda cube. The type system ofthe lambda cube ensures that no more than three levels arerequired, apart from a solitary constant, 2, at the fourthlevel, as we shall see.When writing example programs, we will use typewriter fontfor term variables (e.g. x) and all constants (e.g. +, Int),and Greek font for type variables (e.g. �;�). When writingprogram schemes (for example in type rules) we will usex; y; z to range over variables (of all sorts), and A;B;C; a; b; cto range over expressions (of all sorts). Generally, A will beof a sort one higher than a; thus we might say that \theterm a has type A". Finally, we use s; t to range over theconstants ? and 2.3.4 Quanti�cationThe �fth production in the syntax of PTS expressions (Fig-ure 1) introduces the dependent product, �. There aremany essentially-equivalent ways of interpreting the expres-sion �x : A:B, but for our present purposes the most usefulone is this:�x : A:B is the type of functions from values oftype A to values of type B, in which the resulttype B may perhaps depend on the value of theargument, x.From this de�nition it is immediately clear that � subsumesthe function arrow !:A! B is an abbreviation for �_ : A:Bwhere we use the underscore symbol \_" to denote an anony-mous variable . (We could instead say \�x : A:B where xdoes not occur free in B", but \�_ : A:B" is briefer.)What is not so obvious is that � also subsumes universalquanti�cation, 8. Consider the type �� : ?:A, where A isa type. This type is the type of functions from values ofkind ? (that is, types) to values of type A (that is, terms),where the type A may mention �. But that is precisely theinterpretation we would give to 8�:A! In short,8�:A is an abbreviation for �� : ?:A

For example, consider the K combinator, de�ned thus:K x y = y. In F2 we would write the typing judgementfor K's body like this:` (����:�x : �:�y : �:y) : (8��:�! � ! �)In a PTS we would write the judgement like this3:` (�� : ?:�� : ?:�x : �:�y : �:y) : (�� : ?:�� : ?:�! � ! �)Voil�a! With one blow, � deals with two of the three worriesat the end of the Section 3.2. However, it does so at the priceof making the third worry even more worrying. For example,what is to stop us from writing types like this one?�x : Int:if x>3 then Int else BoolThis is the type of functions from values of type Int toa result of type Int if the argument is greater than 3, orBool otherwise. Type checking may now require arbitrarycomputations at the term level!The PTS framework allows us to answer the question in oneof two ways:1. either we can arrange for strange types like the oneabove to be ill-formed;2. or we can decide that we like the expressiveness thatit gives, and permit it.The latter choice is equivalent to adopting the calculus ofconstructions (Coquand & Huet [1988]).The PTS framework allows terms and types to \mix". Weensure that we can only construct expressions that \makesense" by means of a type system, which is what we discussnext.3.5 The lambda cube type systemWe write typing judgements in the conventional way. Thejudgement: � ` E : Ais read \in environment � the expression E has type A".The environment gives types for the free variables of theexpression E. So, for example, we could correctly state:fInt : ?;+ : Int! Int! Intg(̀�x : Int:+ x x) : Int! IntThe type rules for the lambda cube are given in Figure 2 and3. The VAR rule should be quite familiar; it simply says thatif the environment � attributes the type A to x, then we canconclude that x : A. The premise checks that the type Aof x is itself well formed. The context � is a sequence, nota set, with inner bindings to the right of outer ones. Theweakening rule, WEAK, allows us to throw away irrelevantbindings (but checking that they are each well formed); itis usually applied as often as necessary just before the VARrule.3Remember, \A! B" is just an abbreviation for \�_ : A:B"5



` ? : 2 (STAR)� ` A : s�; x : A ` x : A (VAR)� ` b : B � ` A : s�; x : A ` b : B (WEAK)� ` f : (�x : A:B) � ` a : A� ` f a : B[x := a] (APP)�; x : A ` b : B � ` (�x : A:B) : t� ` (�x : A:b) : (�x : A:B) (LAM)� ` A : s �; x : A ` B : t ` s; t� ` (�x : A:B) : t (PI)� ` a : A � ` B : s A =� B� ` a : B (CONV)Figure 2: Type rules for the Lambda CubeThe second rule, STAR, is also easy. It states that the con-stant ? has super-kind 2. This is where the hierarchy stopsin the lambda cube. There is no typing rule for 2 and henceit cannot appear explicitly in a program.Things become more interesting when we meet the rule forapplications, APP. In ordinary lambda calculus one usuallysees a rule like this:� ` f : A! B � ` a : A� ` f a : B (APPF2)Remembering that A! B is an abbreviation for �_ : A:B,it is easy to see the \ordinary" rule can be obtained byspecialising rule APP with x = _. The substitution of a forx in B does nothing, because in this special case x cannotoccur in B | that is what the \_" meant.The exciting thing is that the same rule, APP, also dealscorrectly with type applications. In F2, we have this rulefor type applications (often called SPEC, since it specialisesa polymorphic type):� ` f : 8�:B� ` f [A] : B[� := A] (SPECF2)A few moments thought, remembering that 8�:B is an ab-breviation for �� : ?:B, should convince you that APP in-deed subsumes SPECF2 . This time the substitution of afor x in B in APP is vital, just as we must substitute A for� in B in SPECF2 .

` ?; ? (?; ?)` 2 ; ? (2 ; ?)` 2 ; 2 (2 ; 2)` ?; 2 (?; 2)Figure 3: The ; judgementRule APP expects f to have a � type. The next rule inFigure 2, LAM, shows how � types are introduced in the�rst place. As before, it is helpful to compare it with therules for F2. The F2 rules for value and type abstractionsare: �; x : A ` b : B� ` (�x : A:b) : A! B (V LAMF2)� ` b : B� ` (��:b) : 8�:B (TLAMF2)The �rst of these states that if, assuming x has type A wecan prove that the body, b, of the abstraction has type B,then the abstraction �x : A:b has type A ! B. Comparethis with rule LAM in Figure 2; the �rst premise and theconclusion match the F2 rules directly. The second premiseis more interesting. Its mission is to check that it is legiti-mate to abstract a variable x : A from an expression of typeB. It does this simply by requiring that the type in theconclusion is a legitimate type | that is, that it itself has atype. For example, the type abstraction ��:E is permittedi� its type, 8�:� is permitted, where E : �.Of course, this just begs the question. When, precisely, is a� type a valid type? To answer that look at the PI rule. Itspeci�es how to �nd the type of the expression (�x : A:B).The �rst premise checks that A is well formed, and �ndsits type, s. The second does the same for B, rememberingto bring x into scope �rst. The third premise uses a newjudgement form,;, which is also de�ned by the four axiomsin Figure 3 . Since these axioms only involve constants, the; judgement does no more than generate four copies of rulePI, each with its own values for s and t. In fact, the lambdacube describes a family of eight type systems, each de�nedby selecting a subset of the axioms for;, as we now discuss.Let us �rst specialise rule PI with the axiom ? ; ?. Thens = ? and t = ?. What does this mean? It means that A andB must both be of kind ?; that is, they must both be types,and hence (moving back to rule LAM) we can abstract aterm variable over a term expression. Indeed, we can read\? ; ?" as \terms can depend on terms". Furthermore, if?; ? is the only axiom for;, then these value abstractionsare the only sort of abstractions we are allowed, so we havethe simply-typed lambda calculus.What is needed to allow type abstractions, which we needfor the second-order lambda calculus, F2? Looking at ruleLAM, we will need x to be a type variable, so A must be a6



(�x : A:B) C =� B[x := C] (LAMconv)...plus the usual rules for symmetry, re
exivity, and tran-sitivity.Figure 4: Conversion rules for expressionskind, so s must be 2. However the body of a type abstrac-tion is a term, so B is a type, and hence t is ?. Hence, to getF2 we need the axiom 2 ; ?, which we can read as \termscan depend on types"4.To get F! we need not only that A is a kind, but also thatit can be a higher kind, such as ? ! ?. If A = ? ! ?, the�rst premise of PI requires that � ` ? ! ? : s, which inturn requires us to give the typing judgement for !, thatis, for �. So we have to re-use rule PI. It is an almostimmediate consequence that we require the axiom 2 ; 2in order to conclude ` ? ! ? : 2. Hence, F! requires theaxiom 2 ; 2, which we can read as \types can depend ontypes".What would happen if we added the �nal axiom, ? ; 2?That would allow \types can depend on terms", taking usinto the Calculus of Constructions (Coquand &Huet [1988]).This is swampy territory for compilers, so we stay well clearand avoid ?; 2.To summarise, we have the following equivalences:System Corresponding subset of;Simply typed �-calculus f?; ?gF2 f?; ?;2 ; ?gF! f?; ?;2 ; ?;2 ; 2gCalculus of constructions f? ; ?;2 ; ?;2 ;2; ?; 2gThere are eight systems given by selecting ? ; ? and anysubset of the remaining three axioms, which is what givesrise to the term \lambda cube". All eight systems makesense, but the ones just identi�ed are the interesting ones.3.6 Completing the type systemThe �nal rule in Figure 2 is CONV, which states that ifwe can deduce a type A for an expression a, and B is �-equivalent to A, then A is a valid type for a. Why is thisrule necessary? First, notice that rule APP might substitutean arbitrary term into the type of an expression, so the typeof an expression is not necessarily in normal form (it mightbe an application, for example). Second, notice that the�rst premise of rule APP requires the type of f to be a �expression. But suppose the type of f is an expression thatevaluates to a � expression, such as (�x : ?:x)(�y : A:B)!Rule CONV simply allows the necessary reduction to takeplace. The =� relation is de�ned in Figure 4.4There is a slight awkwardness here, because you have to readthe notation backwards: p ; q means \q can depend on p". Alsoconfusingly, we read \terms" for \?" and \types" for \2", becausethe ; judgement is two levels away from the original thing!

` ? : 2 (STAR)x : A 2 �� ` x : A (VAR)� ` f :!! (�x : A:B) � ` a : A0 A =� A0� ` f a : B[x := a] (APP)�; x : A ` b : B � ` (�x : A:B) : t� ` (�x : A:b) : (�x : A:B) (LAM)� ` A :!! s �; x : A ` B :!! t ` s; t� ` (�x : A:B) : t (PI)� ` a : A A!!wh B� ` a :!! B (RED)Figure 5: Syntax Directed rules for the Lambda Cube3.7 Syntax directed rulesThe inference rules given in Figure 2 are not directly suitablefor use in a Core Lint type checker as the rules are not syntaxdirected. In particular, you cannot decide at which pointin a derivation the rule CONV must be applied simply bylooking at the structure of the term under consideration.What we seek is a syntax-directed presentation of the rulesthat is both sound and complete with respect to the old set;that is, the new presentation should type exactly the sameterms in exactly the same way. The generality of PTSsmakes this task quite tricky, but Pollack, van Benthem Jut-ting & McKinna [1993] have done much of the hard workfor us. Figure 5 gives a simpli�ed version of their f̀ syntaxdirected system. The main di�erence compared with therules of Figure 2 is the strategic distribution of reduction(!!) over the other rules. The notation A !!wh B meansthat A reduces to the weak head normal form B. The newjudgement form � ` a :!! B means that � ` a : A and� ` A!!wh B, as rule RED states.We have also taken the opportunity to introduce the so-called \valid context" optimization. If we assume that theinitial context is well-formed (a notion it is easy to de�neformally), then it will remain well-formed because the onlyrules that extend it (LAM and PI) do so with a bindingwhose type is well-formed. There is therefore no need tocheck for this well-formedness in rules VAR and WEAK.Furthermore adopt the Barendregt convention that all vari-able names are distinct. As a result, we can regard � as anunordered bag rather than a sequence, and this means wecan elininate WEAK altogether, in favour of the premisex : A 2 � in VAR. All of this is well known (Pollack,van Benthem Jutting & McKinna [1993, Section 2.4.]).7



t̀ype a : A means \a has type A"t̀ype ? : 2 (STARtype)t̀ype (x : A) : A (VARtype)t̀ype f : Ft̀ype (f a) : F a (APPtype)t̀ype b : Bt̀ype (�x : A:b) : (�x : A:B) (LAMtype)t̀ype B : st̀ype (�x : A:B) : s (PItype)t̀ype A : B B =�;� B0t̀ype A : B0 (CONVtype)Figure 6: The type-of judgement, t̀ype .3.8 Factoring the typing judgement `The typing judgement ` actually does two things:� It checks that an expression is well formed.� It �nds its type.Inside a compiler one would hope that the program wasalways well-formed (after an initial type-check, that is), butthe compiler might quite frequently want to �nd the type ofan expression.The \type-of" judgement, t̀ype , in Figure 6, �nds the type ofa well-formed expression, without using an environment. Toachieve this we annotate each bound occurrence of a variablewith its type. This latter property is very useful in practice,because it means that the compiler can contain a simplefunction (corresponding to t̀ype) that maps a expression toits type, without needing to plumb around an environment.But is it not rather expensive to annotate every variableoccurrence? Not necessarily. If the compiler maintains theexression as a graph, it can use a single data structure torepresent x:Int, say, and simply point to that data structurefrom the binding site and each occurrence site.The APPtype rule in Figure 6 also uses a neat trick dueto Kamareddine and Nederpelt (Kamareddine & Nederpelt[1996]). Rather than actually perform the substitution inthe rule, as we did in APP (Figure 2), we simply apply thetype of the function, F , to the argument, a. As before,CONVtype allows us to evaluate applications when neces-sary, but with the additional �-reduction rule:(�x : A:B)a !� B[x := a] (�)

This new presentation has the practical advantage in a com-piler of allowing us to separate the type-�nder from the eval-uator in the compiler, since t̀ype no longer mentions substi-tution. Instead, we can extract the type of an expressionand only then evaluate it.A curious feature of this way of doing things is that thetype of an expression may not be well formed! Considerthe expression (id Int). Rule APPtype would say that ithas type (�� : ?:� ! �) Int. This type evaluates to thewell-formed Int! Int as expected, but it is not itself well-formed. Why? Because (�� : ?:� ! �) has type ? ratherthan a � type. We are a bit suspicious of this intermediateill-formedness, but its advantages are persuasive.Note that the rules VAR and APP rules of �gure 5 caneasily be modi�ed to incorporate the changes introduced inthis section.4 A predicative variantOne disadvantage of the system we have described so far isthat it is impredicative. In an impredicative system, typevariables can range over universally-quanti�ed types. Forexample, suppose that f : 8�:[�]! Int. Then the follow-ing type application is legitimate:f (8�:� ! �)Here, f is instantiated at the polytype (8�:� ! �). Thereis nothing wrong with this, in the sense that \well-typedprograms can't go wrong", but the ability for type variableto range over polytypes greatly complicates the business ofproviding a model for the calculus (Mitchell [1996, Chapter9]).4.1 De�ning the predicative variantFortunately, it is fairly easy to produce a predicative variantof our calculus. Instead of just the kind ? we need twoconstants: ? is the kind of monotypes?? is the kind of polytypesCorresponding to these two kinds are two super-kinds 2 and22, with ? : 2 and ?? : 22. The latter requires a new rule,STAR2, given in Figure 7.To make the system predicative requires that we make moredistinctions about what can depend on what. This is whatthe new rule PI' in Figure 7 does. It makes use of a three-place judgement ` s; t : u, also de�ned in the same Figure.The �rst four rules of the new ; judgement specify whichtypes are polytypes and which are monotypes. For example,assuming that Int : ? we can deduce thatInt : ?Int! Int : ?8�:[�]! Int : ? ?(8�:[�]! Int)! Int : ??8



� ` ?? : 22 (STAR2)� ` A : s �; x : A ` B : t ` s; t : u� ` (�x : A:B) : u (PI')` ?; ? : ? (?; ?)` ?; ?? : ?? (?; ??)` ??; ? : ?? (??; ?)` ??; ?? : ?? (??; ??)` 2 ; ? : ?? (2 ; ?)` 2 ; ?? : ?? (2 ; ??)` 2 ; 2 : 2 (2 ; 2)Figure 7: Modi�ed rules for the predicative variantAs the last example shows, a value of polymorphic typecan still be passed as an argument to a function, but theresulting function type is of kind ??. Notice that in the thirdrule t and u di�er; that is why we now need a three-placejudgement.The next two rules in ;, (2 ; ? and 2 ; ??) say that itis legitimate to abstract a monotyped variable from either amonotype or a polytype, giving a polytype in either case.Finally, 2 ; 2 says that it is OK to create lambda ab-stractions at the type level, provided we only abstract amonotyped variable from a monotype. One could imaginealso having 2 ; 22 (allowing us to abstract a monotypedvariable from a polytype), but there doesn't seem to be apressing reason to add it, and life is simpler without.The important thing is that there is no axiom of the form `22 ; :::, corresponding to the fact that we cannot abstracta polytyped variable from anything.4.2 Pure Type SystemsThe rules given in Figure 7 take us outside the lambda cube.Fortunately, even this generalisation has been well studied.The generalised PI' rule, together with the original rulesVAR, LAM, APP, de�ne a Pure Type System. A PTS isde�ned by:

� The rules VAR, LAM, APP and PI'.� A set, S, of constants (f?; ??;2;22g in our case).� A set, A, of typing axioms relating these constants(f? : 2; ?? : 22g in our case).� A set, R, of ; rules, ranging over the constants Sq.A PTS is called functional if:� (s; t1) 2 A and (s; t2) 2 A ) t1 = t2� (s; t; r1) 2 R and (s; t; r2) 2 R ) r1 = r2In practice almost all practically useful PTSs, and certainlythe ones in this paper, are functional. Many useful theo-rems (such as the substitution lemma, subject reduction)have been proved for arbitrary PTSs, and more are true offunctional PTSs (such as uniqueness of types) (Barendregt[1992, Section 5.2]). Functional PTSs seem to combine thesedesirable theorems with a remarkable degree of 
exibility |for example, we developed the predicative variant of this sec-tion well after the �rst draft of this paper was completed.5 A Real LanguageWe now elaborate the small language of the previous sectioninto a full language, complete with a concrete syntax. Thefull language5 is given in Figure 8. Compared to the previoussection we add the following features:� A program consists of:{ A set of mutually recursive data declarations,each of which introduces a new data type (Sec-tion 5.1).{ A sequence of value declarations, each of whichmay be recursive or non-recursive (Section 5.2).� Expressions are augmented with let, letrec, andcase (Section 5.4).� A special anonymous variable, \_", is provided (Sec-tion 5.3.� A variety of abbreviations are provided (Section 5.5)as syntactic sugar. These abbreviations are markedwith \y" in the left column of Figure 8. Their purposeis to reduce the number of characters it takes to printout a program, and make it more comprehensible tothe human reader.There is only one name space. Haskell programs that usethe same name for a data type and a data constructor willneed to be renamed before being expressed in Henk.5Actually there is still one production to come, for primitiveoperations.9



Program program ! tdecl1 : : : tdecln vdecl1 : : : vdeclm (n � 0;m � 0)Type declaration tdecl ! data tvar = { tvar1 : : : tvarn } (n � 1)Value declaration vdecl ! let { bind } Non-recursivej letrec { bind1 : : : bindn } Recursive (n � 1)Binding bind ! tvar = exprExpression expr ! bexprj \ tvar1 : : : tvarn . expr � (n � 1)j |~| tvar1 : : : tvarn . expr � (n � 1)y j /\ tvar1 : : : tvarn . expr � (n � 1)y j \/ tvar1 : : : tvarn . expr 8 (n � 1)y j bexpr -> expr !j vdecl in expr Local declarationj case expr of { alt1; : : :; altn } (n � 1)at { aexpr1 : : : aexprm } (m � 0)y j case expr of { alt1; : : :; altn }bexpr ! bexpr aexpr Applicationj aexpraexpr ! tvar Variablej literal Literalj * Constantj BOX Constantj ( expr )Typed variable tvar ! var : aexpry j varVariable var ! _ (binding sites only)j identifierCase alternative alt ! pat -> expry j pat tvar1 : : : tvarn -> exprCase patterns pat ! tvarj literal\y" indicates syntactic sugar Figure 8: Concrete syntax
10



5.1 Type declarationsAn important design choice is that we introduce new typeswith explicit declarations, outside the syntax of expressions.A data declaration de�nes a new algebraic data type. Itintroduces a new type constructor plus a number of dataconstructors into the environment. For example the type ofgeneralized trees with values of type a is de�ned as:data Tree : ((*->*) -> * -> *)= { Branch : (\/ (m:*->*) (a:*) .a -> m (Tree m a) -> Tree m a)}This declaration introduces the type constructor Tree andthe data constructor Branch, each with the speci�ed type.Like ML, and unlike Haskell, type constructors and dataconstructors are not required to start with an upper-caseletter.The main design alternative would be to provide primitivetype constructors for unit, sum, product, lifting, and recur-sion, and then use ordinary value declarations to introducenew types. For example, we might introduce lists thus:List:(*->*) = \a:*. rec (\l:*. Lift (Unit + (a ** l)))Whilst this is nice from a theoretical standpoint, it has sev-eral disadvantages:� It does not generalise easily to handle mutual recursionand non-uniform data types; the former is very com-mon, and the latter legal, in both ML and Haskell.� It is hard to know when to unwind the recursion, forexample when testing types for equality.� It is harder to prove strong normalisation for types.We have opted to be conservative and exploit the type struc-ture we know we have. The extra generality of arbitraryproducts and sums does not seem worth the complexity.5.2 Value DeclarationsA value binding binds a variable to a value. This can ei-ther be a term value (e.g. x:Int = 3), or a type value(e.g. Diag:(*->*) = \a.Pair a a). Value bindings can begrouped into recursive or non-recursive declarations. Thesevalue declarations appear both at the top level of a program,and as local declarations inside expressions.5.3 The anonymous variable, _The anonymous variable, _, can be used at the binding siteof a variable that is not mentioned in its scope. It is usefulin the concrete syntax to reduce the creation of new names.More importantly, it is useful inside the compiler because itallows the evaluator to eliminate a substitution step whenapplying an abstraction (� or �) whose bound variable isunused. Such abstractions are very common indeed: everyfunction arrow turns into one!

5.4 Case expressionsA case expression takes apart values built with constructors.Here is an example:case (reverse xs) of{ Cons -> \y ys . <rhs1>; Nil -> <rhs2>}at { Int }A case expression scrutinises an expression, called the scru-tinee. The scrutinee is reverse xs in this example. It eval-uates the expression to head normal form, and matches itagainst the alternatives. The pattern in a case alternativemust be a literal, a constructor name, or _. All the patternsin a case expression must have the same type. The list oftypes in the at clause gives the types at which the construc-tors are instantiated (it is empty if the patterns are literals).In the example, xs is presumably a list of Int, so Cons andNil are instantiated at Int.When an alternative is selected, its right-hand-side is ap-plied to the values of the arguments of the constructor.Thus, if reverse xs evaluates to Cons Int <e1> <e2>, theresult of the case expression will be:(\y ys . <rhs1>) <e1> <e2>If _ is used as a pattern, it is selected only if all the othersfail to match, regardless of order.This form of case is a little unusual. More typically thepatterns can also bind variables, thus:case (reverse as) of{ Cons y ys -> <rhs1>; Nil -> <rhs2>}We provide the conventional form as syntactic sugar (Sec-tion 5.5), but the core form reduces the number of expres-sions that bind new variables. This in turn reduces clutterin the compiler, without losing expressiveness.5.5 Syntactic sugarThe following syntactic sugar greatly reduces the size of theprinted form of a program (apart from the �rst two, whichsimply give more conventional equivalent forms):� /\ means the same as \.� \/ means the same as |~|.� \x1 : : : xn.e means the same as \x1. : : :\xn.e.� e1 -> e2 means the same as |~| _:e1. e2.� A binding occurrence of an un-annotated variable vmeans the same as v:*. This allows us to omit theannotation for most type variables.� A bound occurrence of an un-annotated variable vmeans the same as v:t, where t is the annotationat its binding site. (It may be necessary to perform11



�-conversion for this to have the expected meaning.)This abbreviation allows us to omit annotations on allbound occurrences.� The at clause on a case expression can be omitted,because it can readily be re-inferred.� The case alternative c y1 : : : yn -> emeans the same asc -> \y1 : : : yn . e. The variables y1; : : : ; yn need notbe annotated with their types; if they are not, theirtypes are recovered from the type of the constructorand the instantiating types in the at clause.5.6 Type rulesFigure 9 extend our typechecking rules to deal with the ex-tended language.The ` rules for declarations return an environment as the\type" of a declaration. To avoid clutter, the rules forletrec and case mention only a single binding or alter-native respectively.The main interesting point is in the LET and CASE rules.Their form is very like the APP rule in Figure 6, in thatthe type derived is of the same form as the expression beingtyped. We rely on the conversion rules (which we don't havespace for here) to convert the resulting type to the requiredform where necessary (i.e. in APP and CASE).Rule LET raises an interesting question. Clearly, we needcheck that it is legal to abstract the bound variable(s) overthe body (` � ; A). But, if the binding is recursive |say, letrec {x1 = a1 ;x2 = a2} | do we need to check thatit is legal to abstract the bound variables over each of theai? We believe that the answer is no. To see why, considerthe expression let {x : A = a} let {y : B = b} c. Here, weclearly do not check that we can abstract x : A over b. It isnot clear to us what the correct answer is here, but we planto �nd out!6 Conclusions and further workWe believe that the lambda cube provides a solid foundationfor the intermediate langauge of sophisticated compilers. Itis a subtle system, and extending it to a real language raisesnew technical issues, as we have just seen. Probably someof these problems are old hat to the theorists, which is whythe direct link to a well-studied system is so valuable.There is still much groundwork left to do:� We have gaily extended the PTS framework with re-cursive data types, let, letrec, case, and constants,but it is necessary to prove that all the standard PTStheorems still go through. (Indeed, we noted some un-certainty about the exact typing rule for letrec in theprevious section.)� Section 4 de�nes a predicative variant of Henk, withthe intention that it has a more tractable model; butwe have yet to exhibit such a model.
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